Ulrich ideals and 2-AGL rings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Initial Algebras of Determinantal Rings, Cohen–Macaulay and Ulrich Ideals

Let K be a field and X an m×n matrix of indeterminates over K. Let K[X] denote the polynomial ring generated by all the indeterminates Xij . For a given positive integer r ≤ min{m, n}, we consider the determinantal ideal Ir+1 = Ir+1(X) generated by all r + 1 minors of X if r < min{m, n} and Ir+1 = (0) otherwise. Let Rr+1 = Rr+1(X) be the determinantal ring K[X]/Ir+1. Determinantal ideals and ri...

متن کامل

VAGUE RINGS AND VAGUE IDEALS

In this paper, various elementary properties of vague rings are obtained. Furthermore, the concepts of vague subring, vague ideal, vague prime ideal and vague maximal ideal are introduced, and the validity of some relevant classical results in these settings are investigated.

متن کامل

Fuzzy Group Ideals and Rings

This section define a level subring or level ideals obtain a set of necessary and sufficient condition for the equality of two ideals and characterizes field in terms of its fuzzy ideals. It also presents a procedure to construct a fuzzy subrings (fuzzy ideals) from any given ascending chain of subring ideal. We prove that the lattice of fuzzy congruence of group G (respectively ring R) is isom...

متن کامل

Ideals in Computable Rings

We show that the existence of a nontrivial proper ideal in a commutative ring with identity which is not a eld is equivalent to WKL0 over RCA0, and that the existence of a nontrivial proper nitely generated ideal in a commutative ring with identity which is not a eld is equivalent to ACA0 over RCA0. We also prove that there are computable commutative rings with identity where the nilradical is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2020

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2020.01.028